3.554 \(\int \frac {1}{(c+a^2 c x^2)^2 \tan ^{-1}(a x)^2} \, dx\)

Optimal. Leaf size=41 \[ -\frac {1}{a c^2 \left (a^2 x^2+1\right ) \tan ^{-1}(a x)}-\frac {\text {Si}\left (2 \tan ^{-1}(a x)\right )}{a c^2} \]

[Out]

-1/a/c^2/(a^2*x^2+1)/arctan(a*x)-Si(2*arctan(a*x))/a/c^2

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 41, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {4902, 4970, 4406, 12, 3299} \[ -\frac {1}{a c^2 \left (a^2 x^2+1\right ) \tan ^{-1}(a x)}-\frac {\text {Si}\left (2 \tan ^{-1}(a x)\right )}{a c^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((c + a^2*c*x^2)^2*ArcTan[a*x]^2),x]

[Out]

-(1/(a*c^2*(1 + a^2*x^2)*ArcTan[a*x])) - SinIntegral[2*ArcTan[a*x]]/(a*c^2)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
 e, f}, x] && EqQ[d*e - c*f, 0]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4902

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[((d + e*x^2)^(q + 1)
*(a + b*ArcTan[c*x])^(p + 1))/(b*c*d*(p + 1)), x] - Dist[(2*c*(q + 1))/(b*(p + 1)), Int[x*(d + e*x^2)^q*(a + b
*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]

Rule 4970

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Dist[d^q/c^(m
 + 1), Subst[Int[((a + b*x)^p*Sin[x]^m)/Cos[x]^(m + 2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])

Rubi steps

\begin {align*} \int \frac {1}{\left (c+a^2 c x^2\right )^2 \tan ^{-1}(a x)^2} \, dx &=-\frac {1}{a c^2 \left (1+a^2 x^2\right ) \tan ^{-1}(a x)}-(2 a) \int \frac {x}{\left (c+a^2 c x^2\right )^2 \tan ^{-1}(a x)} \, dx\\ &=-\frac {1}{a c^2 \left (1+a^2 x^2\right ) \tan ^{-1}(a x)}-\frac {2 \operatorname {Subst}\left (\int \frac {\cos (x) \sin (x)}{x} \, dx,x,\tan ^{-1}(a x)\right )}{a c^2}\\ &=-\frac {1}{a c^2 \left (1+a^2 x^2\right ) \tan ^{-1}(a x)}-\frac {2 \operatorname {Subst}\left (\int \frac {\sin (2 x)}{2 x} \, dx,x,\tan ^{-1}(a x)\right )}{a c^2}\\ &=-\frac {1}{a c^2 \left (1+a^2 x^2\right ) \tan ^{-1}(a x)}-\frac {\operatorname {Subst}\left (\int \frac {\sin (2 x)}{x} \, dx,x,\tan ^{-1}(a x)\right )}{a c^2}\\ &=-\frac {1}{a c^2 \left (1+a^2 x^2\right ) \tan ^{-1}(a x)}-\frac {\text {Si}\left (2 \tan ^{-1}(a x)\right )}{a c^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 34, normalized size = 0.83 \[ -\frac {\frac {1}{a^2 x^2 \tan ^{-1}(a x)+\tan ^{-1}(a x)}+\text {Si}\left (2 \tan ^{-1}(a x)\right )}{a c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c + a^2*c*x^2)^2*ArcTan[a*x]^2),x]

[Out]

-(((ArcTan[a*x] + a^2*x^2*ArcTan[a*x])^(-1) + SinIntegral[2*ArcTan[a*x]])/(a*c^2))

________________________________________________________________________________________

fricas [C]  time = 0.51, size = 112, normalized size = 2.73 \[ \frac {{\left (-i \, a^{2} x^{2} - i\right )} \arctan \left (a x\right ) \operatorname {log\_integral}\left (-\frac {a^{2} x^{2} + 2 i \, a x - 1}{a^{2} x^{2} + 1}\right ) + {\left (i \, a^{2} x^{2} + i\right )} \arctan \left (a x\right ) \operatorname {log\_integral}\left (-\frac {a^{2} x^{2} - 2 i \, a x - 1}{a^{2} x^{2} + 1}\right ) - 2}{2 \, {\left (a^{3} c^{2} x^{2} + a c^{2}\right )} \arctan \left (a x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^2/arctan(a*x)^2,x, algorithm="fricas")

[Out]

1/2*((-I*a^2*x^2 - I)*arctan(a*x)*log_integral(-(a^2*x^2 + 2*I*a*x - 1)/(a^2*x^2 + 1)) + (I*a^2*x^2 + I)*arcta
n(a*x)*log_integral(-(a^2*x^2 - 2*I*a*x - 1)/(a^2*x^2 + 1)) - 2)/((a^3*c^2*x^2 + a*c^2)*arctan(a*x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \mathit {sage}_{0} x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^2/arctan(a*x)^2,x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [A]  time = 0.23, size = 37, normalized size = 0.90 \[ -\frac {2 \Si \left (2 \arctan \left (a x \right )\right ) \arctan \left (a x \right )+\cos \left (2 \arctan \left (a x \right )\right )+1}{2 a \,c^{2} \arctan \left (a x \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a^2*c*x^2+c)^2/arctan(a*x)^2,x)

[Out]

-1/2/a/c^2*(2*Si(2*arctan(a*x))*arctan(a*x)+cos(2*arctan(a*x))+1)/arctan(a*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {2 \, {\left (a^{4} c^{2} x^{2} + a^{2} c^{2}\right )} \arctan \left (a x\right ) \int \frac {x}{{\left (a^{4} c^{2} x^{4} + 2 \, a^{2} c^{2} x^{2} + c^{2}\right )} \arctan \left (a x\right )}\,{d x} + 1}{{\left (a^{3} c^{2} x^{2} + a c^{2}\right )} \arctan \left (a x\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a^2*c*x^2+c)^2/arctan(a*x)^2,x, algorithm="maxima")

[Out]

-(4*(a^4*c^2*x^2 + a^2*c^2)*arctan(a*x)*integrate(1/2*x/((a^4*c^2*x^4 + 2*a^2*c^2*x^2 + c^2)*arctan(a*x)), x)
+ 1)/((a^3*c^2*x^2 + a*c^2)*arctan(a*x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {1}{{\mathrm {atan}\left (a\,x\right )}^2\,{\left (c\,a^2\,x^2+c\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(atan(a*x)^2*(c + a^2*c*x^2)^2),x)

[Out]

int(1/(atan(a*x)^2*(c + a^2*c*x^2)^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {1}{a^{4} x^{4} \operatorname {atan}^{2}{\left (a x \right )} + 2 a^{2} x^{2} \operatorname {atan}^{2}{\left (a x \right )} + \operatorname {atan}^{2}{\left (a x \right )}}\, dx}{c^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a**2*c*x**2+c)**2/atan(a*x)**2,x)

[Out]

Integral(1/(a**4*x**4*atan(a*x)**2 + 2*a**2*x**2*atan(a*x)**2 + atan(a*x)**2), x)/c**2

________________________________________________________________________________________